
INTRODUCTION TO FPGA

SYFALA WORKSHOP - PAW 23
Pierre Cochard, Maxime Popoff, Romain Michon,
Tanguy Risset, Yann Orlarey, Matthieu Imbert
and The Emeraude Team

December 1, 2023



INTRODUCTION TO FPGA

Context

HIGH LEVEL
PROGRAMMING

Make programming
of audio DSP easy

./syfala
FPGA

High Performance
Embbeded Platform

Command Line Compiler

1 26



INTRODUCTION TO FPGA

1 What’s an FPGA?

2 Hardware Description Language (HDL)

3 High Level Synthesis (HLS)

4 SoC Architecture

5 Hardware/Software Co-Design

6 Conclusion

2 26



What’s an FPGA?



INTRODUCTION TO FPGA

What’s an FPGA?

Field-Programmable Gate Array

Field-Programmable: the internal components of the device and the
connections between them are programmable after deployment.

Gate: refers to logic gates, the basic building blocks for all the hardware on the
chip.

Array: there aremany (billions) of them on the chip.

3 26



INTRODUCTION TO FPGA

What’s an FPGA?

FPGAs contain an array of programmable
blocks.

4 26



INTRODUCTION TO FPGA

What’s an FPGA?

FPGAs contain an array of programmable
blocks.

Programming them means choosing and
configuring the blocks,

4 26



INTRODUCTION TO FPGA

What’s an FPGA?

FPGAs contain an array of programmable
blocks.

Programming them means choosing and
configuring the blocks

and connecting them with reconfigurable
interconnects.

4 26



INTRODUCTION TO FPGA

What’s an FPGA?

FPGAs contain an array of programmable
blocks.

Programming them means choosing and
configuring the blocks

and connecting them with reconfigurable
interconnects.

This architecture defines the function
implemented in the FPGA.

4 26



INTRODUCTION TO FPGA

What’s an FPGA?

Configurable Logic Block (CLB)

Made of a Look Up Table (LUT) and a Register: Can do any logic function N to
1.
(e.g., XOR, Custom State Machine, MUX)

Other Blocks

Memory Blocks: On chip RAM blocks.

DSP Blocks: for custommath functions.

Independent Clock Networks with their PLLs.

5 26



INTRODUCTION TO FPGA

What’s an FPGA?

Configurable Logic Block (CLB)

Made of a Look Up Table (LUT) and a Register: Can do any logic function N to
1.
(e.g., XOR, Custom State Machine, MUX)

Other Blocks

Memory Blocks: On chip RAM blocks.

DSP Blocks: for custommath functions.

Independent Clock Networks with their PLLs.

5 26



INTRODUCTION TO FPGA

What’s an FPGA?

(Re)Configurable Hardware

“Programmed” using a Hardware
Description Language (HDL).

You don’t program an FPGA, you
configure it (as a circuit).
The programming model of FPGAs is the
digital circuit.

6 26



INTRODUCTION TO FPGA

What’s an FPGA?

CPU

Traditional computer architectures use a CPU.

Programmable software.

Throughput and computational power limited
by the number of core and frequency.

Execute (ALU)

Decode

Fetch Instruction

Store

FPGA

Throughput and computational power limited
by the number of resources available
(and the clock freq.).

7 26



INTRODUCTION TO FPGA

What’s an FPGA?

Parallelization: Using resources in parallel.
FPGA embed a lot of physical I/O, allowing for parallel data processing (e.g.,

multichannel).

8 26



INTRODUCTION TO FPGA

What’s an FPGA?

Pipelining: Using resources sequentially
Increase throughput but doesn't reduce latency.

NO PIPELINE fct1 fct2 fct3

data1 IN

data1 OUT

fct1 fct2 fct3

data2 IN

data2 OUT

fct1 fct2 fct3

data3 IN

data3 OUT

...

Resources

Time

PIPELINE fct1 fct2 fct3

data1 IN

data1 OUT

fct1 fct2 fct3

data2 IN

data2 OUT

fct1 fct2 fct3

data3 IN

data3 OUT

...

Resources

Time

9 26



INTRODUCTION TO FPGA

What’s an FPGA?

FPGAs are a better fit than CPUs for real-time audio processing.

I High throughput.

I Very low latency.

I High sampling rate (>20MHz).

I Very large number of inputs/outputs.

I Parallel data processing.

They have been increasingly used in recent years for real-time audio Digital
Signal Processing (DSP) applications.
But they are very hard to program!

10 26



INTRODUCTION TO FPGA

What’s an FPGA?

FPGA Workflow (with Syfala)

High-level
DSP lang

(e.g. Faust)

Faust
Compiler

High-level
language
(e.g. C++)

HLS Tool
Synthesis

Tool

Classic HDL flow

High-level synthesis flow

Really High-level synthesis flow

11 26



Hardware Description Language (HDL)



INTRODUCTION TO FPGA

Synthesis
Tool

Classic HDL flow

Hardware Description Language

Describe the structure and behavior of electronic circuits.

It allows for the synthesis of an HDL description into a netlist (a specification of
physical electronic components and how they are connected together),
which can then be placed and routed to produce the set of masks used to create an
integrated circuit (very long process).

Twomajor hardware description languages: VHDL and Verilog.

HDL text books are ususally distinguishing three different abstraction levels: structural,
dataflow (RTL: functional), behavioral (Sequential).

12 26



High Level Synthesis (HLS)



INTRODUCTION TO FPGA

High-level
language
(e.g. C++)

HLS
Tool

Synthe-
sis Tool

Classic HDL flow

High-level synthesis flow

High Level Synthesis

High-Level Synthesis (HLS) is an automated design process that takes an abstract
behavioral specification of a digital system and generates a register-transfer level
(RTL) structure that realizes the given behavior.

Since the 2010, HLS allows for fully sequential approach FPGA programming in C/C++.

Vitis High-Level Synthesis User Guide (UG1399)

You still have to handle the design
constraints.

13 26



INTRODUCTION TO FPGA

High-level
language
(e.g. C++)

HLS
Tool

Synthe-
sis Tool

Classic HDL flow

High-level synthesis flow

High Level Synthesis

High-Level Synthesis (HLS) is an automated design process that takes an abstract
behavioral specification of a digital system and generates a register-transfer level
(RTL) structure that realizes the given behavior.

Since the 2010, HLS allows for fully sequential approach FPGA programming in C/C++.

Vitis High-Level Synthesis User Guide (UG1399)

You still have to handle the design
constraints.

13 26



INTRODUCTION TO FPGA

High Level Synthesis

Example: how to implement a multiply–accumulate (MAC) operation.

for (int i = 0; i < 10; i++) {
out += i*i;

}

Fully sequential approach:

Mult Adderi

Reg

10 times

Reusing the same bloc: high latency, but
resource-efficient. Texec = (TMult + TAdd) ∗ 10

Fully parallelized approach:

Mult 1

Mult 2

Mult 3

Mult10

Add 1

Add 2

Add 6

i=0

i=1

i=2

i=9

...

...
...balanced tree

Duplicate the function: very expensive in resources
but allows a low latency. Texec = (TMult + 4 ∗ TAdd)

14 26



INTRODUCTION TO FPGA

High Level Synthesis

Example: how to implement a multiply–accumulate (MAC) operation.

for (int i = 0; i < 10; i++) {
out += i*i;

}

Fully sequential approach:

Mult Adderi

Reg

10 times

Reusing the same bloc: high latency, but
resource-efficient. Texec = (TMult + TAdd) ∗ 10

Fully parallelized approach:

Mult 1

Mult 2

Mult 3

Mult10

Add 1

Add 2

Add 6

i=0

i=1

i=2

i=9

...

...
...balanced tree

Duplicate the function: very expensive in resources
but allows a low latency. Texec = (TMult + 4 ∗ TAdd)

14 26



INTRODUCTION TO FPGA

High Level Synthesis

Example: how to implement a multiply–accumulate (MAC) operation.

for (int i = 0; i < 10; i++) {
out += i*i;

}

Fully sequential approach:

Mult Adderi

Reg

10 times

Reusing the same bloc: high latency, but
resource-efficient. Texec = (TMult + TAdd) ∗ 10

Fully parallelized approach:

Mult 1

Mult 2

Mult 3

Mult10

Add 1

Add 2

Add 6

i=0

i=1

i=2

i=9

...

...
...balanced tree

Duplicate the function: very expensive in resources
but allows a low latency. Texec = (TMult + 4 ∗ TAdd)

14 26



INTRODUCTION TO FPGA

High Level Synthesis

Example: how to implement a multiply–accumulate (MAC) operation.

Using pragmas and directives allows us to fine tune the design constraints...

Fully sequential approach:

for (int i = 0; i < 10; i++) {
out += i*i;

}

Fully parallelized approach:

for (int i = 0; i < 10; i++) {
#pragma UNROLL
//Fully unroll the loop
out += i*i;

}
/*Equivalent of:
out+=0*0;
out+=1*1;
out+=2*2;
...
out+=9*9; */

15 26



INTRODUCTION TO FPGA

High Level Synthesis

But there are many parameters to take into account.

Fully sequential approach:

Mult Adderi

Reg

10 times

We can pipeline this architecture by using the
multiplier with i+1 while the result of i is being
computed by the adder.
Texec = (TMult + TAdd) ∗ 10
Texec = (TMult + TAdd) ∗ 5

Fully parallelized approach:

Mult 1

Mult 2

Mult 3

Mult10

Add 1

Add 2

Add 6

i=0

i=1

i=2

i=9

...

...
...balanced tree

If i is stocked in the BRAM,we can only perform 2
accesses per cycles.
Texec = (TMult + 4 ∗ TAdd)
Texec = (TMult + 4 ∗ TAdd + 5 ∗ TMem)

16 26



INTRODUCTION TO FPGA

High Level Synthesis

But there are many parameters to take into account.

Fully sequential approach:

Mult Adderi

Reg

10 times

We can pipeline this architecture by using the
multiplier with i+1 while the result of i is being
computed by the adder.
Texec = (TMult + TAdd) ∗ 10
Texec = (TMult + TAdd) ∗ 5

Fully parallelized approach:

Mult 1

Mult 2

Mult 3

Mult10

Add 1

Add 2

Add 6

i=0

i=1

i=2

i=9

...

...
...balanced tree

If i is stocked in the BRAM,we can only perform 2
accesses per cycles.
Texec = (TMult + 4 ∗ TAdd)
Texec = (TMult + 4 ∗ TAdd + 5 ∗ TMem)

16 26



INTRODUCTION TO FPGA

High Level Synthesis

But there are many parameters to take into account.

Fully sequential approach:

Mult Adderi

Reg

10 times

We can pipeline this architecture by using the
multiplier with i+1 while the result of i is being
computed by the adder.
Texec = (TMult + TAdd) ∗ 10
Texec = (TMult + TAdd) ∗ 5

Fully parallelized approach:

Mult 1

Mult 2

Mult 3

Mult10

Add 1

Add 2

Add 6

i=0

i=1

i=2

i=9

...

...
...balanced tree

If i is stocked in the BRAM,we can only perform 2
accesses per cycles.
Texec = (TMult + 4 ∗ TAdd)
Texec = (TMult + 4 ∗ TAdd + 5 ∗ TMem)

16 26



INTRODUCTION TO FPGA

High Level Synthesis

Syfala: Really High Level Synthesis

High-level
DSP lang

(e.g.
Faust)

Faust
Com-
piler

High-level
language
(e.g. C++)

HLS
Tool

Synthe-
sis Tool

Classic HDL flow

High-level synthesis flow

Really High-level synthesis flow

Syfala Implement the design constraints.

17 26



SoC Architecture



INTRODUCTION TO FPGA

SoC Architecture

We will use a SoC (System On Chip): FPGA + CPU (ARM).

Xilinx Alveo FPGA (only) Xilinx Zynq7000 Soc (ZYBO Z7)

18 26



INTRODUCTION TO FPGA

SoC Architecture: Balancing Computations

Usually, we don’t want to implement the entire program on the hardware (FPGA).

Example with a FAUST program:

import("stdfaust.lib");
f=hslider("freq[knob:1]",400,50,2000,0.01);
sineOsc=os.oscrs(f);
echo=+~@(ma.SR*0.5)*0.5;
process=sineOsc:echo:*(0.5);

os.oscrs is a sinusoidal oscillator based on a resonant filter.

To compute the coefficients of the filter from the frequency parameter, the sin
and cos functions are needed.

The long delay in the echo implies the use of a lot of memory.

19 26



INTRODUCTION TO FPGA

SoC Architecture: Balancing Computations

We can dispatch the computations and the memory use to save FPGA
resources.

Audio/Sample
Rate

Typ., 32 kHz to 192 kHz

Control Rate

Typ., 100 Hz to 1000 Hz

FPGA ARM

BRAM
270 KB

Small objects

DDR
512 MB

Large arrays

M
e
m
o
ry

C
o
m
p
u
ta
ti
o
n

20 26



INTRODUCTION TO FPGA

SoC Architecture: Balancing Computations

import("stdfaust.lib");
f=hslider("freq[knob:1]",400,50,2000,0.01);
sineOsc=os.oscrs(f);
echo=+~@(ma.SR*0.5)*0.5;
process=sineOsc:echo:*(0.5);

DDR
- Echo Delay

Sensors ADC

FPGA
- Filter-Based Sine Osc

- Echo

CPU
- Filter coefs computation

Audio CodecAudio Inputs Audio Outputs

Potentiometer

A part of the program is software on the CPU
(C++ compiled with gcc)

A part of the program is hardware on the FPGA
(C++ synthetised with HLS or directly HDL)

Syfala use a FAUST backend to automatically do the dispatch.

How can we handle this co-design?

21 26



INTRODUCTION TO FPGA

SoC Architecture: Balancing Computations

import("stdfaust.lib");
f=hslider("freq[knob:1]",400,50,2000,0.01);
sineOsc=os.oscrs(f);
echo=+~@(ma.SR*0.5)*0.5;
process=sineOsc:echo:*(0.5);

DDR
- Echo Delay

Sensors ADC

FPGA
- Filter-Based Sine Osc

- Echo

CPU
- Filter coefs computation

Audio CodecAudio Inputs Audio Outputs

Potentiometer

A part of the program is software on the CPU
(C++ compiled with gcc)

A part of the program is hardware on the FPGA
(C++ synthetised with HLS or directly HDL)

Syfala use a FAUST backend to automatically do the dispatch.

How can we handle this co-design?

21 26



INTRODUCTION TO FPGA

SoC Architecture: Balancing Computations

import("stdfaust.lib");
f=hslider("freq[knob:1]",400,50,2000,0.01);
sineOsc=os.oscrs(f);
echo=+~@(ma.SR*0.5)*0.5;
process=sineOsc:echo:*(0.5);

DDR
- Echo Delay

Sensors ADC

FPGA
- Filter-Based Sine Osc

- Echo

CPU
- Filter coefs computation

Audio CodecAudio Inputs Audio Outputs

Potentiometer

A part of the program is software on the CPU
(C++ compiled with gcc)

A part of the program is hardware on the FPGA
(C++ synthetised with HLS or directly HDL)

Syfala use a FAUST backend to automatically do the dispatch.

How can we handle this co-design?

21 26



Hardware/Software Co-Design



INTRODUCTION TO FPGA

Hardware/Software Co-Design

Different workflows:

- Using the same high level language for both hardware and software allows
you to compile a single file with an acceleration function that will be hardware.
(e.g. Intel oneAPI DPC++, Spatial Lang)

- Generate IPs* from HLS tools (in C++) or directly write them in HDL.
Then, Interconnect them with the software part using the IP integrator block
design (BD).

*An IP is a reusable unit of logic, cell, or integrated circuit layout design. It's the hardware
implementation of a function.

22 26



INTRODUCTION TO FPGA

Hardware/Software Co-Design

Different workflows:

- Using the same high level language for both hardware and software allows
you to compile a single file with an acceleration function that will be hardware.
(e.g. Intel oneAPI DPC++, Spatial Lang)

- Generate IPs* from HLS tools (in C++) or directly write them in HDL.
Then, Interconnect them with the software part using the IP integrator block
design (BD).

*An IP is a reusable unit of logic, cell, or integrated circuit layout design. It's the hardware
implementation of a function.

22 26



INTRODUCTION TO FPGA

Hardware/Software Co-Design

Example: Syfala implementation

Workflow:
IP

Faust

- Generate a FAUST IP with HLS tools from
C++ (generated with FAUST).

Exec.

ARM

- Configure the CPU (baremetal or Linux).

I2
S

SoC
- Import a custom VHDL I2S IP.

BRAM

DDR

- Connect the IPs and thememory.

ZYBO

- Connect the external ports.

Codec

HW/SW
Control

23 26



INTRODUCTION TO FPGA

Hardware/Software Co-Design

Example: Syfala implementation

Workflow:
IP

Faust

- Generate a FAUST IP with HLS tools from
C++ (generated with FAUST).

Exec.

ARM

- Configure the CPU (baremetal or Linux).

I2
S

SoC
- Import a custom VHDL I2S IP.

BRAM

DDR

- Connect the IPs and thememory.

ZYBO

- Connect the external ports.

Codec

HW/SW
Control

23 26



INTRODUCTION TO FPGA

Hardware/Software Co-Design

Example: Syfala implementation

Workflow:
IP

Faust

- Generate a FAUST IP with HLS tools from
C++ (generated with FAUST).

Exec.

ARM

- Configure the CPU (baremetal or Linux).

I2
S

SoC
- Import a custom VHDL I2S IP.

BRAM

DDR

- Connect the IPs and thememory.

ZYBO

- Connect the external ports.

Codec

HW/SW
Control

23 26



INTRODUCTION TO FPGA

Hardware/Software Co-Design

Example: Syfala implementation

Workflow:
IP

Faust

- Generate a FAUST IP with HLS tools from
C++ (generated with FAUST).

Exec.

ARM

- Configure the CPU (baremetal or Linux).

I2
S

SoC
- Import a custom VHDL I2S IP.

BRAM

DDR

- Connect the IPs and thememory.

ZYBO

- Connect the external ports.

Codec

HW/SW
Control

23 26



INTRODUCTION TO FPGA

Hardware/Software Co-Design

Example: Syfala implementation

Workflow:
IP

Faust

- Generate a FAUST IP with HLS tools from
C++ (generated with FAUST).

Exec.

ARM

- Configure the CPU (baremetal or Linux).

I2
S

SoC
- Import a custom VHDL I2S IP.

BRAM

DDR

- Connect the IPs and thememory.

ZYBO

- Connect the external ports.

Codec

HW/SW
Control

23 26



INTRODUCTION TO FPGA

Hardware/Software Co-Design

Example: Syfala implementation
Vivado Bloc Design

24 26



Conclusion



INTRODUCTION TO FPGA

Conclusion

I FPGAs are very powerful embedded platforms that offer unique features in
the context of real-time audio DSP.
Sample-per-sample computation, high sampling rate, extremely low latency, large number of GPIOs

allowing for direct interfacing with audio codec chips, etc.

I But programming them is extremely complex and out of reach to
non-specialized engineers as well as to most people in the audio community.

I The use of HLS tools has enhanced accessibility, but it still necessitates
substantial knowledge in the field ofmicroelectronics.

I You will be able to program them at a very high level of abstraction using
the Syfala Toolchain.

What’s next?
11h00: Introduction to Syfala Workflow (Pierre Cochard)
11h30: Hands-on: Connecting to Grid5000 and launching docker container (Syfala Team)

25 26



INTRODUCTION TO FPGA

Conclusion

I FPGAs are very powerful embedded platforms that offer unique features in
the context of real-time audio DSP.
Sample-per-sample computation, high sampling rate, extremely low latency, large number of GPIOs

allowing for direct interfacing with audio codec chips, etc.

I But programming them is extremely complex and out of reach to
non-specialized engineers as well as to most people in the audio community.

I The use of HLS tools has enhanced accessibility, but it still necessitates
substantial knowledge in the field ofmicroelectronics.

I You will be able to program them at a very high level of abstraction using
the Syfala Toolchain.

What’s next?
11h00: Introduction to Syfala Workflow (Pierre Cochard)
11h30: Hands-on: Connecting to Grid5000 and launching docker container (Syfala Team)

25 26



INTRODUCTION TO FPGA

Conclusion

I FPGAs are very powerful embedded platforms that offer unique features in
the context of real-time audio DSP.
Sample-per-sample computation, high sampling rate, extremely low latency, large number of GPIOs

allowing for direct interfacing with audio codec chips, etc.

I But programming them is extremely complex and out of reach to
non-specialized engineers as well as to most people in the audio community.

I The use of HLS tools has enhanced accessibility, but it still necessitates
substantial knowledge in the field ofmicroelectronics.

I You will be able to program them at a very high level of abstraction using
the Syfala Toolchain.

What’s next?
11h00: Introduction to Syfala Workflow (Pierre Cochard)
11h30: Hands-on: Connecting to Grid5000 and launching docker container (Syfala Team)

25 26



INTRODUCTION TO FPGA

Conclusion

I FPGAs are very powerful embedded platforms that offer unique features in
the context of real-time audio DSP.
Sample-per-sample computation, high sampling rate, extremely low latency, large number of GPIOs

allowing for direct interfacing with audio codec chips, etc.

I But programming them is extremely complex and out of reach to
non-specialized engineers as well as to most people in the audio community.

I The use of HLS tools has enhanced accessibility, but it still necessitates
substantial knowledge in the field ofmicroelectronics.

I You will be able to program them at a very high level of abstraction using
the Syfala Toolchain.

What’s next?
11h00: Introduction to Syfala Workflow (Pierre Cochard)
11h30: Hands-on: Connecting to Grid5000 and launching docker container (Syfala Team)

25 26



INTRODUCTION TO FPGA

Conclusion

I FPGAs are very powerful embedded platforms that offer unique features in
the context of real-time audio DSP.
Sample-per-sample computation, high sampling rate, extremely low latency, large number of GPIOs

allowing for direct interfacing with audio codec chips, etc.

I But programming them is extremely complex and out of reach to
non-specialized engineers as well as to most people in the audio community.

I The use of HLS tools has enhanced accessibility, but it still necessitates
substantial knowledge in the field ofmicroelectronics.

I You will be able to program them at a very high level of abstraction using
the Syfala Toolchain.

What’s next?
11h00: Introduction to Syfala Workflow (Pierre Cochard)
11h30: Hands-on: Connecting to Grid5000 and launching docker container (Syfala Team)

25 26



INTRODUCTION TO FPGA

Appendix 1: Syfala Compilation Flow

Faust.dsp

Hardware.cpp

High-Level

Software.cpp

High-Level

FAUST
Compiler

RTL

VHDL

Exec.

bin

High Level
Synthesis
(HLS)

gcc

Baremetal/Linux

ARM

IP

FPGA

RTL
synth/impl

25 26



INTRODUCTION TO FPGA

Appendix 1: Syfala Compilation Flow

Faust.dsp

Hardware.cpp

High-Level

Software.cpp

High-Level

FAUST
Compiler

RTL

VHDL

Exec.

bin

High Level
Synthesis
(HLS)

gcc

Baremetal/Linux

ARM

IP

FPGA

RTL
synth/impl

25 26



INTRODUCTION TO FPGA

Appendix 1: Syfala Compilation Flow

Faust.dsp

Hardware.cpp

High-Level

Software.cpp

High-Level

FAUST
Compiler

RTL

VHDL

Exec.

bin

High Level
Synthesis
(HLS)

gcc

Baremetal/Linux

ARM

IP

FPGA

RTL
synth/impl

25 26



INTRODUCTION TO FPGA

Appendix 2: VHDL example with a half ladder

Dataflow (assignments using logic

expressions).
- How data flows through the
system
- Gate-level implementation.
- Concurrents signals
assignments statements.

entity half_adder is
port (a, b: in std_logic;

sum, carry_out: out std_logic);
end half_adder;

architecture dataflow of half_adder is
begin

sum <= a xor b;
carry_out <= a and b;

end dataflow;

Behavioral (if then, case
statements etc.).
- Most abstract style.
- One or more process
statements.
- Each process is a single
concurrent statement that
contains sequential statements.

entity half_adder is
port (a, b: in std_logic;

sum, carry_out: out std_logic);
end half_adder;

architecture behavior of half_adder is
begin

ha: process (a, b)
begin

if a = 1 then
sum <= not b;
carry_out <= b;

else
sum <= b;
carry_out <= 0;

end if;
end process ha;

end behavior;

Structural (instantiating primitive

entities, e.g. logic gates gates and

flip-flops).
Entity is described as a set of
interconnected components.

entity half_adder is
port (a, b: in std_logic;
sum, carry_out: out std_logic);

end half_adder;

architecture structure of half_adder is

component xor_gate
port (i1, i2: in std_logic;

o1: out std_logic);
end component;

component and_gate
port (i1, i2: in std_logic;

o1: out std_logic);
end component;

begin
u1: xor_gate port map \
(i1=>a, i2=>b, o1=>sum);
u2: and_gate port map \
(i1=>a, i2=>b, o1=>carry_out);

end structure;

25 26



INTRODUCTION TO FPGA

Appendix 2: VHDL example with a half ladder

Dataflow (assignments using logic

expressions).
- How data flows through the
system
- Gate-level implementation.
- Concurrents signals
assignments statements.

entity half_adder is
port (a, b: in std_logic;

sum, carry_out: out std_logic);
end half_adder;

architecture dataflow of half_adder is
begin

sum <= a xor b;
carry_out <= a and b;

end dataflow;

Behavioral (if then, case
statements etc.).
- Most abstract style.
- One or more process
statements.
- Each process is a single
concurrent statement that
contains sequential statements.

entity half_adder is
port (a, b: in std_logic;

sum, carry_out: out std_logic);
end half_adder;

architecture behavior of half_adder is
begin

ha: process (a, b)
begin

if a = 1 then
sum <= not b;
carry_out <= b;

else
sum <= b;
carry_out <= 0;

end if;
end process ha;

end behavior;

Structural (instantiating primitive

entities, e.g. logic gates gates and

flip-flops).
Entity is described as a set of
interconnected components.

entity half_adder is
port (a, b: in std_logic;
sum, carry_out: out std_logic);

end half_adder;

architecture structure of half_adder is

component xor_gate
port (i1, i2: in std_logic;

o1: out std_logic);
end component;

component and_gate
port (i1, i2: in std_logic;

o1: out std_logic);
end component;

begin
u1: xor_gate port map \
(i1=>a, i2=>b, o1=>sum);
u2: and_gate port map \
(i1=>a, i2=>b, o1=>carry_out);

end structure;

25 26



INTRODUCTION TO FPGA

Appendix 2: VHDL example with a half ladder

Dataflow (assignments using logic

expressions).
- How data flows through the
system
- Gate-level implementation.
- Concurrents signals
assignments statements.

entity half_adder is
port (a, b: in std_logic;

sum, carry_out: out std_logic);
end half_adder;

architecture dataflow of half_adder is
begin

sum <= a xor b;
carry_out <= a and b;

end dataflow;

Behavioral (if then, case
statements etc.).
- Most abstract style.
- One or more process
statements.
- Each process is a single
concurrent statement that
contains sequential statements.

entity half_adder is
port (a, b: in std_logic;

sum, carry_out: out std_logic);
end half_adder;

architecture behavior of half_adder is
begin

ha: process (a, b)
begin

if a = 1 then
sum <= not b;
carry_out <= b;

else
sum <= b;
carry_out <= 0;

end if;
end process ha;

end behavior;

Structural (instantiating primitive

entities, e.g. logic gates gates and

flip-flops).
Entity is described as a set of
interconnected components.

entity half_adder is
port (a, b: in std_logic;
sum, carry_out: out std_logic);

end half_adder;

architecture structure of half_adder is

component xor_gate
port (i1, i2: in std_logic;

o1: out std_logic);
end component;

component and_gate
port (i1, i2: in std_logic;

o1: out std_logic);
end component;

begin
u1: xor_gate port map \
(i1=>a, i2=>b, o1=>sum);
u2: and_gate port map \
(i1=>a, i2=>b, o1=>carry_out);

end structure;
25 26



INTRODUCTION TO FPGA

Appendix 3: HLS Example

void compute_fir(float* fTemp) {
#pragma HLS array_partition variable=fTemp type=complete
//avoid dependence in the innerloop

outer_loop: for (int i = 0; i < N; i++) {
#pragma HLS pipeline
//pipeline the outerloop

inner_loop: for (int n = 0; n < BLOCK_NSAMPLES; n++) {
#pragma HLS UNROLL
//parallelize the innerloop ()

fTemp[n] += samples[i+BLOCK_NSAMPLES -1-n] * coeffs[i];
}

}
}

26 26


	What’s an FPGA?
	Hardware Description Language (HDL)
	High Level Synthesis (HLS)
	SoC Architecture
	Hardware/Software Co-Design
	Conclusion

