Emeraude Syfala HLS Grid5000 Conclusion

First Syfala Workshop: Experimenting With the Faust to FPGA Compilation Flow Using Grid5000 Insa-Lyon 1/12/2023

Pierre Cochard, Maxime Popoff, Romain Michon, Tanguy Risset, Yann Orlarey, Matthieu Imbert and The Emeraude Team

Workshop

크 > < 크 >

Workshop	Emeraude	Syfala	HLS	Grid5000	Conclusion
00	000	0000	0000	000	
Table of	f Contents				

- Things to know about today
- 2 Emeraude Team
- 3 Syfala Project: Audio to FPGA Compilation
- 4 High Level Synthesis
- grid5000 for accessing Xilinx tools
- 6 Conclusion

Workshop	Emeraude	Syfala	HLS	Grid5000	Conclusion
●○	000	0000	0000	000	
Table of	Contents				

- Things to know about today
- 2 Emeraude Team
- Syfala Project: Audio to FPGA Compilation
- High Level Synthesis
- 5 grid5000 for accessing Xilinx tools
- 6 Conclusion

э

Workshop	Emeraude	Syfala	HLS	Grid5000	Conclusion
○●	000	0000	0000	000	

Syfala Recap: Challenges and Future Works

Program: (https://paw.grame. fr/#syfala)

- 09h00: Workshop Introduction (Tanguy Risset)
- 09h30: Introduction to Faust Langage (Yann Orlarey)
- 10h00: Hands-on Faust Language (Yann Orlarey)
- coffee Break
- 10h30: Introduction to FPGA (Maxime Popoff)
- 11h00: Introduction to Syfala-lab (Pierre Cochard)
- 11h30: Connecting to Grid5000 (Syfala Team)
- · 12h30: Lunch (Room 'projet A', same floor)
- · 14h00: Hands-on: Running Syfala Linux Workfkow
- 15h30: Advanced Syfala Use (Pierre Cochard, Maxime Popoff, Romain Michon)
- 16h30: Hands-on sand box: free experimental Audio to FPGA programming
- 18h00: End

Participants:

- 8 participants with various background
- +3 local attendees

Instructors:

- Pierre Cochard (github master)
- Maxime Popoff (Phd on Syfala)
- Yann Orlarey (Faust inventor)
- Romain Michon (embedded audio)
- Matthieu Imbert (grid5000)

ヘロト 人間 とくほとくほとう

• Tanguy Risset (head)

3

Workshop	Emeraude ●oo	Syfala 0000	HLS 0000	Grid5000 000	Conclusion
Table o	f Contents				

- Things to know about today
- 2 Emeraude Team
- 3 Syfala Project: Audio to FPGA Compilation
- 4 High Level Synthesis
- 5 grid5000 for accessing Xilinx tools
- 6 Conclusion

э

WorkshopEmeraudeSyfalaHLSGrid5000ConclusionWhy emeraude? and what for?

• Emeraude stands for:

Embedded Programmable Audio Systems

• New Research Team in Lyon (Mar. 2022) collaboration between The Grame institute and Citi research lab.

- Domains of expertise:
 - Embedded Audio Systems
 - Acoustics
 - · Sound synthesis and effects

- Arithmetic for FPGA.
- Audio on FPGA
- Faust language development

A zoom on Emeraude's origins

・ロト ・ 理 ト ・ ヨ ト ・

3

Table a	f Contonts				
Workshop	Emeraude 000	Syfala ●○○○	HLS 0000	Grid5000	Conclusion

- Things to know about today
- 2 Emeraude Team
- 3 Syfala Project: Audio to FPGA Compilation
 - 4 High Level Synthesis
- 5 grid5000 for accessing Xilinx tools
- 6 Conclusion

ъ

Workshop
ooEmeraude
ooSyfala
c ooHLS
ooGrid5000
oooConclusion
oo

Syfala development stages

Syfala original objective: reach smallest possible audio latency

 First version (2020 no ARM control)

- 2021: Control on ARM (hardware or software-UART-based)
- 2021: Large memory handling (long delay lines)
- 2022: Ultra-low latency (11µs analog to analog)
- 2022: Parametric number of audio channels
- 2022: TDM I2S (up to 256 channels on Zybo Z10)
- 2023: Embedded Linux on ARM (Eth., Wifi, MIDI, etc.)

ヘロト 人間 ト ヘヨト ヘヨト

2023: C++ based compilation flow

э

 Workshop
 Emeraude
 Syfala
 HLS
 Grid5000
 Conclusion

 Syfala Compiler (2023) Conceptual View

Resulting audio system

Bare metal

With Linux

イロト 不得 とくほ とくほとう

ъ

Workshop	Emeraude 000	Syfala 0000	HLS ●000	Grid5000	Conclusion
Table o	f Contents				

- Things to know about today
- 2 Emeraude Team
- Syfala Project: Audio to FPGA Compilation
- 4 High Level Synthesis
- 5 grid5000 for accessing Xilinx tools
- 6 Conclusion

 Workshop
 Emeraude
 Syfala
 HLS
 Grid5000
 Conclusion

 00
 000
 000
 000
 000
 00
 00

Programming an FPGA Means ...

- many logic cells ("LUT")
- many small (≈ 24 bit) hard multipliers ("DSP blocks")
- many small (≈ 10 kBit) memories
- A SoC which includes a processing system (ARM@1GHz)

Zynq 7000 Processing System

イロト イポト イヨト イヨト

Example: Xilinx Zynq 7010 (\approx 50€): 2 ARM processor cores

+ **28k** logic cells + **80** DSP blocks + **60** 36kBit memory block ... running at **200 MHz**

э

A D b 4 A b

- Classic HDL flow: You don't program, you design a circuit
 - with low-level languages such as VHDL or Verilog
 - · with compilers called "synthesis tools" that can take hours

< ∃⇒

- · Classic HDL flow: You don't program, you design a circuit
 - with low-level languages such as VHDL or Verilog
 - · with compilers called "synthesis tools" that can take hours
- Since the 2010, HLS allows for FPGA programming in C/C++
 - but you won't escape the synthesis tools

イロト イポト イヨト イヨト

Syfala real challenge: control HLS compilation

- Add a higher level to High Level Synthesis.
 - · Use HLS source as a backend of a compiler (Faust compiler)
- Use HLS compiler (vitis_hls) as a backend to Faust
 - · Take advantage of parallel computation allowed by Faust

イロト イポト イヨト イヨ

Workshop	Emeraude	Syfala	HLS	Grid5000	Conclusion
00	000	0000	0000	●○○	
Table o	f Contents				

- Things to know about today
- 2 Emeraude Team
- Syfala Project: Audio to FPGA Compilation
- 4 High Level Synthesis
- grid5000 for accessing Xilinx tools
 - 6 Conclusion

→ Ξ → < Ξ →</p>

< 🗇 🕨

Workshop	Emeraude 000	Syfala 0000	HLS 0000	Grid5000 ○●○	Conclusion

Syfala Infrastructure

what we need:

- Xilinx tools (80 GB):
 - vitis_hls (HLS)
 - vivado (hardware synthesis)
 - vitis (HW/SW system building)
- Linux building
 - Linux sources
 - qemu (cross compilation)
- Faust Compiler

・ 回 ト ・ ヨ ト ・ ヨ ト

what we need:

- Xilinx tools (80 GB):
 - vitis_hls (HLS)
 - vivado (hardware synthesis)
 - vitis (HW/SW system building)
- Linux building
 - Linux sources
 - qemu (cross compilation)
- Faust Compiler

How to run all that:

- A simple solution is a Linux container
- grid5000 allows us to:
 - Use a distant Linux machine (at Nancy)
 - Create a temporary account
 - Import a Syfala container
 - Run Xilinx tools remotely

イロト イポト イヨト イヨト

 import bistream to flash on local Zybo boards

gros-22.nancy.g5K

Of course before all that you need to access Wifi...

э

ヘロン ヘアン ヘビン ヘビン

Workshop	Emeraude	Syfala	HLS	Grid5000	Conclusion
	000	0000	0000	000	●○
Table o	f Contents				

- Things to know about today
- 2 Emeraude Team
- Syfala Project: Audio to FPGA Compilation
- 4 High Level Synthesis
- 5 grid5000 for accessing Xilinx tools

6 Conclusion

Conclusion: next talk to come

- Yann Orlarey
 - 09h30: Introduction to Faust Langage (Yann Orlarey)
 - 10h00: Hands-on Faust Language (Yann Orlarey)
- Maxime Popoff
 - introduction to FPGA
- Pierre Cochard
 - Syfala-lab presentation
- 11h30: hands-on: connect to grid5000 and then lunch

Questions?

https://github.com/inria-emeraude/syfala

・ 同 ト ・ ヨ ト ・ ヨ ト …