First Syfala Workshop:
Experimenting With the Faust to FPGA Compilation Flow Using Grid5000
Insa-Lyon 1/12/2023

Pierre Cochard, Maxime Popoff, Romain Michon, Tanguy Risset, Yann Orlarey, Matthieu Imbert and The Emeraude Team

Citi Laboratory (INSA de Lyon, INRIA, GRAME-CNCM)

November 30, 2023
Table of Contents

1. Things to know about today
2. Emeraude Team
3. Syfala Project: Audio to FPGA Compilation
4. High Level Synthesis
5. grid5000 for accessing Xilinx tools
6. Conclusion
Table of Contents

1. Things to know about today
2. Emeraude Team
3. Syfala Project: Audio to FPGA Compilation
4. High Level Synthesis
5. grid5000 for accessing Xilinx tools
6. Conclusion
Syfala Recap: Challenges and Future Works

Program: (https://paw.grame.fr/#syfala)

- 09h00: Workshop Introduction (Tanguy Risset)
- 09h30: Introduction to Faust Language (Yann Orlarey)
- 10h00: Hands-on Faust Language (Yann Orlarey)
- coffee Break
- 10h30: Introduction to FPGA (Maxime Popoff)
- 11h00: Introduction to Syfala-lab (Pierre Cochard)
- 11h30: Connecting to Grid5000 (Syfala Team)
- 12h30: Lunch (Room 'projet A', same floor)
- 14h00: Hands-on: Running Syfala Linux Workfkw
- 15h30: Advanced Syfala Use (Pierre Cochard, Maxime Popoff, Romain Michon)
- 16h30: Hands-on sand box: free experimental Audio to FPGA programming
- 18h00: End

Participants:
- 8 participants with various background
- +3 local attendees

Instructors:
- Pierre Cochard (github master)
- Maxime Popoff (Phd on Syfala)
- Yann Orlarey (Faust inventor)
- Romain Michon (embedded audio)
- Matthieu Imbert (grid5000)
- Tanguy Risset (head)
Why emeraude? and what for?

- **Emeraude** stands for: *Embedded Programmable Audio Systems*
- New Research Team in Lyon (Mar. 2022) collaboration between The Grame institute and Citi research lab.

- Domains of expertise:
 - Embedded Audio Systems
 - Acoustics
 - Sound synthesis and effects
 - Arithmetic for FPGA.
 - Audio on FPGA
 - Faust language development
A zoom on Emeraude’s origins

- 2010
 - Romain Michon
 - Yann Orlarey
 - Stephane Letz
 - Tanguy Risset
 - Florent de Dinechin

- 2018
 - CCRMA (Stanford)
 - GRAME (Lyon)
 - Socrate (Lyon)

- 2021
 - Citi (Lyon)
 - Emeraude (Lyon)

Emeraude Team

From Faust to FPGA using rid5000
Table of Contents

1. Things to know about today
2. Emeraude Team
3. Syfala Project: Audio to FPGA Compilation
4. High Level Synthesis
5. grid5000 for accessing Xilinx tools
6. Conclusion
Syfala development stages

Syfala original objective: reach **smallest possible audio latency**

- **First version** (2020 no ARM control)
 - Faust.dsp
 - Faust compiler
 - Faust.cpp
 - Vitis HLS
 - Faust.vhd
 - Zynq board
 - bitstream.bit

- **2021**: Control on ARM (hardware or software-UART-based)
- **2021**: Large **memory** handling (long delay lines)
- **2022**: **Ultra-low latency** (11 \(\mu s \) analog to analog)
- **2022**: Parametric number of audio channels
- **2022**: **TDM I2S** (up to 256 channels on Zybo Z10)
- **2023**: **Embedded Linux** on ARM (Eth., Wifi, MIDI, etc.)
- **2023**: **C++** based compilation flow
Syfala Compiler (2023) Conceptual View

Two possible flows: from Faust or from C++.

- **audio.cpp**
 - C++ Program
 - or
 - Faust Program
 - **audio.dsp**

- **Manual Writing**
- **Faust Compiler**
- **Faust Comp.**

- **Hardware.cpp**
 - High Level Synthesis
 - FPGA
 - IP

- **Software.cpp**
 - gcc
 - Control
 - ARM

Emeraude Team

From Faust to FPGA using rid5000
Resulting audio system

- Bare metal
- With Linux
Table of Contents

1. Things to know about today
2. Emeraude Team
3. Syfala Project: Audio to FPGA Compilation
4. High Level Synthesis
5. grid5000 for accessing Xilinx tools
6. Conclusion
Programming an FPGA Means ...

- many logic cells ("LUT")
- many small (≈ 24 bit) hard multipliers ("DSP blocks")
- many small (≈ 10 kBit) memories
- A SoC which includes a processing system (ARM@1GHz)

Example: Xilinx Zynq 7010 (≈ 50€): 2 ARM processor cores
+ 28k logic cells + 80 DSP blocks + 60 36kBit memory block ... running at 200 MHz
The real revolution: High Level Synthesis

- Classic HDL flow: You don’t program, you design a circuit
 - with low-level languages such as VHDL or Verilog
 - with compilers called “synthesis tools” that can take hours
The real revolution: High Level Synthesis

High-level synthesis (HLS) flow

- Classic HDL flow: You don’t program, you design a circuit
 - with low-level languages such as VHDL or Verilog
 - with compilers called “synthesis tools” that can take hours
- Since the 2010, HLS allows for FPGA programming in C/C++
 - but you won’t escape the synthesis tools
Syfala real challenge: control HLS compilation

- Add a higher level to High Level Synthesis.
 - Use HLS source as a backend of a compiler (Faust compiler)
 - Use HLS compiler (`vitis_hls`) as a backend to Faust
 - Take advantage of parallel computation allowed by Faust

Really High-level synthesis flow

- High-level DSP lang e.g. Faust → Faust compiler → High-level language e.g. C++ → HLS tool → Synthesis tool
 - Classical HDL flow

Emeraude Team From Faust to FPGA using rid5000
Table of Contents

1. Things to know about today
2. Emeraude Team
3. Syfala Project: Audio to FPGA Compilation
4. High Level Synthesis
5. grid5000 for accessing Xilinx tools
6. Conclusion
Syfala Infrastructure

what we need:

- Xilinx tools (80 GB):
 - `vitis_hls` (HLS)
 - `vivado` (hardware synthesis)
 - `vitis` (HW/SW system building)
- Linux building
 - Linux sources
 - `qemu` (cross compilation)
- Faust Compiler
Syfala Infrastructure

what we need:
- Xilinx tools (80 GB):
 - vitis_hls (HLS)
 - vivado (hardware synthesis)
 - vitis (HW/SW system building)
- Linux building
 - Linux sources
 - qemu (cross compilation)
- Faust Compiler

How to run all that:
- A simple solution is a Linux container
- grid5000 allows us to:
 - Use a distant Linux machine (at Nancy)
 - Create a temporary account
 - Import a Syfala container
 - Run Xilinx tools remotely
 - import bistream to flash on local Zybo boards
Syfala using grid5000

Of course before all that you need to access Wifi...
Table of Contents

1. Things to know about today
2. Emeraude Team
3. Syfala Project: Audio to FPGA Compilation
4. High Level Synthesis
5. grid5000 for accessing Xilinx tools
6. Conclusion
Conclusion: next talk to come

- Yann Orlarey
 - 09h30: Introduction to Faust Language (Yann Orlarey)
 - 10h00: Hands-on Faust Language (Yann Orlarey)
- Maxime Popoff
 - introduction to FPGA
- Pierre Cochard
 - Syfala-lab presentation
- 11h30: hands-on: connect to grid5000 and then lunch

Questions?

https://github.com/inria-emeraude/syfala